Multiview Locally Linear Embedding for Effective Medical Image Retrieval

نویسندگان

  • Hualei Shen
  • Dacheng Tao
  • Dianfu Ma
چکیده

Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the "curse of dimensionality". Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images

In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...

متن کامل

Graph Embedding and Dimensionality Reduction - A Survey

Dimension reduction is defined as the process of mapping high-dimensional data to a lowerdimensional vector space. Most machine learning and data mining techniques may not be effective for high-dimensional data. In order to handle this data adequately, its dimensionality needs to be reduced. Dimensionality reduction is also needed for visualization, graph embedding, image retrieval and a variet...

متن کامل

Neural method for Explicit Mapping of Quasi-curvature Locally Linear Embedding in image retrieval

This paper proposed a new explicit nonlinear dimensionality reduction using neural networks for image retrieval tasks. We first proposed a Quasi-curvature Locally Linear Embedding (QLLE) for training set. QLLE guarantees the linear criterion in neighborhood of each sample. Then, a neural method (NM) is proposed for out-of-sample problem. Combining QLLE and NM, we provide a explicit nonlinear di...

متن کامل

Color correction for large-baseline multiview video

Color misalignment correction is an important, yet unsolved problem, especially for multiview video captured by large disparity camera setups. In this paper, we introduce a robust large-baseline color correction method that preserves the original manifold structure of the input video. The manifold structure is extracted by locally linear embedding (LLE), aimed at linearly representing each pixe...

متن کامل

Robust Image Retrieval using Multiview Scalable Vocabulary Trees

Content-based image retrieval using a Scalable Vocabulary Tree (SVT) built from local scale-invariant features is an effective method of fast search through a database. An SVT built from fronto-parallel database images, however, is ineffective at classifying query images that suffer from perspective distortion. In this paper, we propose an efficient server-side extension of the single-view SVT ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013